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ABSTRACT

In this paper we formulate in a rigorous way a wave theory of charged

beam linear transport. The Wigner distribution function is introduced

and provides the link with classical mechanics. Finally the Von-Neumann

equation is shown to coincide with the Liouville equation for the linear

° transport.

INTRODUCTION

A formal "quantum" theory of charged beam transport has been recently

proposed. (Ref. I) Within such a context the possibility of viewing the

beam emittance as a kind of quantization constant has been considered

on the basis of some strong conceptual similarities existing with the

so-called "quantum" theory of light rays. (Ref. 2)

The proposed quantization procedure (described in some detail below)

cannot be thought as fully satisfactory and in particular the role played

by the "beam wave function" (b.w.f.) and its link with classical dynamics

have not ben thoroughly investigated and clarified.

In this paper we develop, in a more rigorous way, the fundamental

steps towards a "quantum" theory of beam transport through linear elements,

showing the relation with classical mechanics and discussing the con-

nections with the Liouville equation which describes the time evolution

of non-interacting classical ensembles. We will show that classical

dynamics and the Courant-Snyder theory (Ref. 3) can be recovered by using

the formalism of the Wigner phase-space function, (Ref. 4) which therefore

can be seen as the natural framework to study the evolution of charged

beam transport through linear magnetic systems.

The paper is organized as follows. In Sect. 1 we review some aspects

of symplectic mechanics (Ref. 5) and introduce some definitions which

will be useful in Sect. 2 where the "quantum" theory of charged linear

transport will be completely developed in terms of the Wigner phase-space

function. Some comments and final remarks on the "quantum" theory of

nonlinear charged transport conclude this paper.
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I. SYMPLECTIC MECHANICS OF QUADRATIC HAMILTONIANS

The most general time dependent quadratic Hamiltonian in one degree
of freedom can be written as

1 2+ 1 2+
H=_a(t)q _b(t)p c(t)qp (1.1)

or in a matrix form as

tt= _zrfiz (1.g_
_ _ .

where

= N0 = ( 1 3)p ' \c(t) b(t)

and the superscript "T" denotes transpose.

The equations of motion for the vector z are obtained from the Poisson

Brackets (P.B.) with the Hamiltonian (i.i) _The relevant rules are easily

derived. It is quite straightforward to realize that

and that

(_,zr_}=2_ * (1.4b)

where S is the unit symplectic matrix in two dimensions. According to

the above rules the equations of motion of _ are easily written, namely,

and therefore immediately integrated, thus yielding

_(t)= _(t)E(o ) (].6)

where

Note that {_r,_}=0and therefore the above product cannot be, strictly

speaking, considered a conventional P.B. In the case that the second

term in the {.}-product is a scalar function [as in Eq. (l.4b)] then

the {,} is a conventional P.B.
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<IL I>E/(t)= e×p .9 tT(t')dt" (1.7)

and {,}. denotes time ordering for the classical evolution operator which

is necessary when the commutator [SH(1),SH(t')] is different from zero.

The above formalism is particularly useful to introduce the

fluctuation tensor and its dynamical features, namely, let us pose

5:(t) =< ::(t) ::r (t) > -< z >< z r > (1.8)

where <,> denotes ensemble average.

In a matrix form we recover the usual expression

(2 2)?(t)= oq op_
0 2 0 2

Pq P

(1.9)

The equation of motion of Z follows from Eq. (1.5) and reads

a>.,(t) _:£+2.9 r (1.1o)
dt

where i?= SI?. and can be immediately integrated in terms of the above

evolution operator U thus getting

5:(t) = C(t)£(o)Or(t) (1.11)

Within this formalism it is easy to recover the well-known quadratic

invariant of Courant-Snyder, namely, let us write the most general

quadratic (time dependent) expression in z

I = :: r "/" ( t ) ;: (1.12)

where

Then we impose that ! is a "time-dependent" invariant, i.e.,

ct I 61

dt ,3 t
+<I,tl}=0 (1.14)

thus obtaining the following equations specifying _,_,y
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Po
2au-2cy y(O)-- yo

a13-6y

from which it is easy to verify that

[3y = 1 + _2

The Courant-Snyder invariant reads explicitly as

l =yq2 + 20Lpq+[_p 2

and it is widely used in the theory of linear transport.

(1.15)

(1.16)

(1.17)

2. TOWARDS A QUANTIZED THEORY

In the previous section we introduced the necessary background to

derive a kind of uncertainty principle in the theory of linear transport.

From Eq. (i.ii) we get the relevant result

det T.(t) = det _(0) (2.1)

i.e., det_ is an invariant quantity and the emittance A of the system

A(t)- [< qZ >< p2 >_ < qp >2]1/2 (2.2)

is preserved in time.

Furthermore this means that

OqOp>--A

which represents a kind of uncertainty principle in the canonical variables

q,p and can be used as the starting point of our quantization procedure.

The rules are simple, the beam momentum is replaced by an operator
specified by

p = --- (2.3)
iaq

where_4_is the beam reduced emittance and the following rule of commutation
is also assumed:

[p,q]=-L_ (2.4)
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A "Hamiltonian" operator is finally associated to the longitudinal

coordinate of propagation s

so that the "Schrodinger" equation for a beam passing through a quadrupole

of strength k(s) reads

_-- ()a [ -?_'2 a2 1 2 1
+-k(s)q _2(q,s)

as tp'q's'= 2 c)q2 2
(2.6)

where _(q,s) denotes the beam wave function (b.w.f.). Clearly the b.w.f.

_(q,s) must be related in some way to the "classical" beam distribution

p(q,p,s) satisfying the Liouville equation for the time evolution of an

ensemble of single-particle systems. The link is not obvious since

depends only on q and eventually on s while p is a function of q,p and

s. The answer is given by the Wigner distribution function which is defined

as follows:

÷co

14/(q,p,s)=_ dykU* q+_y,s tp q-_y,s e
(2.7)

and satisfies the Von-Neumann equation for a generic potential V(q) (Ref.

6)

i _s+p_ q IV(q,p,s) F q+2 -_p -V q-_. -_pJJl4/(q,p,s) (2.8)

In the above-considered case of propagation through a quadrupole of

strength k(s) i.e., for an elastic potential V(q)=_k(s)q 2, the Von-Nuemann

equation reduces to

as--h/(q'p;s)=- p_q-k(s)q_p W(q,p;s)
(2.9)

which is equivalent to the Liouville classical equation. In this simple

case we can identify the classical distribution density p with the Wigner

distribution function h/ thus providing a completely consistent quan-

tization scheme. Within this framework the physically meaningful quantity

is not l_(q,s)12dq but W(q,p;s)dqdp which ensures the consistency of

our procedure.

As a simple exercise it is straightforward to see that
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] [ 1 y(s)q2+2(_(s)qp+r3(s)p 2] (2.]0)W(q,p;s)=(2_)(_/2)exp -_. (/1/2)

is a solution of (2.9) if and only if the "time-dependent" parameters

(_,_,y) satisfy the following system of differential equations:

13"= -2e
(x" k(s)13- y

y" 2k(s)(_

(2.11)

which are the well-known equations defining the evolution of the Twiss

parameters in quadrupole lenses [see Eq. (1.15)].

3. CONCLUDING REMARKS

The extension of the developed theory to the case of nonlinear

transport of charged beams is not straightforward and the problems involved
can be illustrated in a simple example.

A sextupole term introduces, in the single-particle Hamiltonian, a
contribution of the type

X(s)
V(q,s)- 3 q (3.1)

Inserting the above potential in the Von-Neumann equation (2.8) we easily

get the following evolution equation for the Wigner distribution function:

asW(q,p,s) p_qq k(s)q2_p [V(q,p;s)

^

L

12 ap aW(q'p;s) (3.2)

where [ denotes the Liouville operator associated to the potential (3.1)

and given by [=-p_+kq2_, The extra term in Eq. (3.2) is a purely

"quantum" contribution and it is not present in the classical Liouville

equation for p(q,p;s).From this point of view h/and p cannot be identified

and since they coincide in the limit_ 0, p may be viewed as the "classical"

counterpart of the Wigner distribution function W.
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